Goals and Challenges of Communication

- Reaching (only) the correct recipient(s)
- Imparting correct information
- Timeliness
- Causing the desired effect
- Effective...

Communication and Signal Transduction

How Do Cells Communicate?

- Unit 2 is about cell-cell communication, one of the most heavily researched areas of physiology today
Stuff that Was Confusing

How is it Possible That...

- Chemicals traveling in the bloodstream act only on specific targets?
- One chemical can have different effects on different tissues?
- Cells can change their sensitivity to the chemical through time?

Receptors and Signal Transduction

Hold on to your adenoids...
What Determines the Meaning of a Message?

The Meaning of a Message is determined by:

- The ligand (the thing that binds)
- The receptor (what the thing binds to)

Agonists and antagonists are clinical, synthesized ligands.
Signal Transduction

- Transduction = to send information in a different form

Signal Transduction

- Signal Transduction in a cell refers to the transmission of a signal from 1 side of the cell membrane to the other
- First messenger = Ligand
 - The action of the ligand depends upon it's ability to
There Are Two Possibilities:

- The ligand is lipophilic (CAN cross the membrane)
- The ligand is lipophobic (CANNOT cross the membrane)
What Lipophobic Ligands Bind To

Second Messengers
- Second messengers are intracellular molecules that facilitate transduction of a lipophobic message to the interior of a cell
- These messengers may
 - open or close membrane channels
 - modulate metabolic enzymes
 - activate or deactivate transport proteins

Signal Transduction Pathways Often Have
- Cascade reactions
- Signal amplification
Transduction Mechanisms

- Various types:
 - Tyrosine kinase
 - is a receptor (the ligand binds to it)
 - is a kinase (a phosphorylating enzyme)

Phosphorylation

ACTIVATE MODULATE EXCITE
STIMULATE DEACTIVATE PRODUCE
EXCRETE STOP SECRETE
MOVE INHIBIT TRANSPORT
REGULATE UPTAKE CATALYZE

Transduction Mechanisms

- G protein-coupled receptors (GPCRs)
 - Can link receptors to ion channels
 - Can link receptors to amplifier enzymes:

<table>
<thead>
<tr>
<th>Table 6-1</th>
<th>Amplifier Enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFIER ENZYME</td>
<td>CELLULAR LOCATION</td>
</tr>
<tr>
<td>Adenylyl cyclase</td>
<td>Membrane</td>
</tr>
<tr>
<td>Guanylyl cyclase</td>
<td>Membrane</td>
</tr>
<tr>
<td>Phospholipase C</td>
<td>Membrane</td>
</tr>
</tbody>
</table>

*IP₃ = inositol triphosphate; DAG = diacylglycerol
What IS cyclic AMP?

ATP \rightarrow \text{adenylyl cyclase} \rightarrow \text{cAMP}

Second Messengers

<table>
<thead>
<tr>
<th>SECOND MESSENGER</th>
<th>MADE FROM</th>
<th>AMPLIFIER ENZYME</th>
<th>LINKED TO</th>
<th>ACTION</th>
<th>EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>cAMP</td>
<td>ATP</td>
<td>Adenylyl cyclase (membrane)</td>
<td>GPCR*</td>
<td>Activates protein kinase A, especially PKA.</td>
<td>Binds to ion channels. Alters channel opening.</td>
</tr>
<tr>
<td>cGMP</td>
<td>GTP</td>
<td>Guanylyl cyclase (membrane)</td>
<td>Receptor-enzyme</td>
<td>Activates protein kinase G (PKG).</td>
<td>Binds to ion channels. Alters channel opening.</td>
</tr>
<tr>
<td>IP_3</td>
<td>Membrane phospholipids</td>
<td>Phospholipase C (membrane)</td>
<td>GPCR</td>
<td>Releases Ca^{2+} from intracellular stores.</td>
<td>Sees Ca^{2+} effects below.</td>
</tr>
<tr>
<td>DAG</td>
<td>Membrane phospholipids</td>
<td>Phospholipase C (membrane)</td>
<td>GPCR</td>
<td>Activates protein kinase C.</td>
<td>Phosphorylates proteins.</td>
</tr>
<tr>
<td>Ca^{2+}</td>
<td>Membrane phospholipids</td>
<td>Phospholipase C (membrane)</td>
<td>GPCR</td>
<td>Activates protein kinase C.</td>
<td>Phosphorylates proteins.</td>
</tr>
</tbody>
</table>

*GPCR = G protein-coupled receptor. IP_3 = inositol triphosphate. DAG = diacylglycerol.
Endocrinology

Long-distance signalling may be electrical signals passing along neurons or chemical signals that travel through the circulatory system.

Endocrine System

(d) Hormones are secreted by endocrine glands or cells into the blood. Only target cells with receptors for the hormone respond to the signal.
What is a Hormone?

- Hormones act on distant target(s) and are effective at very low concentrations
- Hormones have half-lives
- Hormones must be transported via the blood to distant target(s)
- Hormones control:
 - Growth and development
 - Metabolism
 - Homeostasis
 - Reproduction

Hormones act on target cells by controlling:

- Rate of enzymatic reactions
- Membrane transport
- Other hormones (trophic hormones)

<table>
<thead>
<tr>
<th>Nervous System</th>
<th>Endocrine System</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST</td>
<td>SLOW</td>
</tr>
<tr>
<td>Electrochemical</td>
<td>Chemical signals</td>
</tr>
<tr>
<td>signals</td>
<td></td>
</tr>
<tr>
<td>Short duration</td>
<td>Long duration</td>
</tr>
<tr>
<td>Neurons</td>
<td>Secretory cells</td>
</tr>
</tbody>
</table>

Hormone Classification

- Anatomical Classification:
 - "Classic" (secreted by endocrine cells)
- Neurosecretory (secreted by neurons)

- Chemical Classification:
 - Peptide hormones
 - Steroid hormones
 - Amine hormones
Chemical Classes of Hormones
Yippee! There are Only THREE CLASSES:

- Amine Hormones: Catecholamines
- Peptide hormones
- Steroid hormones
- Thyroid hormones

For Each Class You Need to Know:

- How is it made?
- How is it secreted?
- How is it transported through the body?
- What is its mechanism of action?
- How long does its message last (half-life)?

KEEP IN MIND

The lipid solubility of the hormone will determine a lot about its behavior.
Peptide Hormones

- Peptide Hormone Synthesis
 - Synthesized in rough ER, processed in ER and Golgi
 - Preprohormone --> prohormone --> hormone
 - Hormone is then packaged in secretory vesicles by the Golgi and stored
 - Vesicle contents released by Ca++ dependent exocytosis

Peptide Transport and Half-Life

- Peptides are water-soluble, and dissolve in extracellular fluid for transport

 - Half-lives are short (several minutes)

Cellular Mechanisms of Action

- Peptides are lipophobic, so they have membrane receptors.
- Signal transduction sets off cell response (usu. cAMP)
Steroid Hormones

- Derived from cholesterol
- Made only in gonads, placenta, and adrenal cortex
- How can a cell store them?

Steroid Hormone Transport and Half-Life

- Steroids are transported by protein carriers
- Long half-life
Cellular Mechanisms of Action of Steroid Hormones

- Intracellular receptors in cytoplasm or nucleus of target cell
- Many are transcription factors / interact with
- High lag time

Amine Hormones

- Amine hormones are derived from single
- Melatonin (tryptophan)
- Catecholamines and thyroid hormones (tyrosine)
Catecholamines

- Catecholamines are synthesized in neural tissue.
- Synthesis, release, and cellular mechanism of catecholamines are similar to peptide hormones.

Thyroid hormones

- Synthesized like peptide hormones, but behave like steroid hormones once released.
- Contain iodine.
- Like peptide hormones, thyroid hormones are made in advance and stored in an inactive form.

Transport and Half-Life of catecholamines:

- They are lipophobic and dissolve in the plasma. In the blood, they have a very short half-life (seconds).

Cellular Mechanism of Action:

- They bind to membrane receptors and modify existing proteins to exert their actions.
Thyroid hormones

- Require [] to be transported in the blood.
- Thyroid-receptor complex activates transcription.

Control of Hormone Release

We classify hormones by endocrine reflex pathways

- Classic hormones
 - Endocrine cell acts as a receptor, integrating center and []
 - Ex: Parathyroid hormone
Classic hormones with multiple controls (stimuli)

- Ex: secretion is affected by:
 - Blood glucose levels
 - Nervous system activities
 - Hormones secreted by cells in small intestine

Neurohormones

- Are released when a nerve cell that synthesizes them receives a signal from the nervous system
How Hormones Interact

Hormones act together on a target

- "The whole is greater than the sum of the parts"
- Ex: epinephrine and glucagon on elevation of blood glucose

Permissiveness

- One hormone cannot act without the presence of another hormone
- Ex: Thyroid hormone must be present, along with GRH, gonadotropins and steroid hormones for normal development of the system
Antagonism

- One hormone counteracts the effects of another

- Ex: growth hormone or glucagon both increase blood glucose and are antagonistic to insulin.